
Ontology-based Design of Knowledge
Processing Machines

Shunkevich D.V.
Belarusian State University of Informatics and Radioelectronics

Minsk, Belarus
shunkevichdv@gmail.com

Abstract—The work is devoted to the development of intelli-
gent systems knowledge processing machines design technology,
which is based on an ontological model of the machine itself and
the ontological model of the design process. A model of system of
knowledge processing machines design support also considered.

Keywords—knowledge processing machine, ontology, subject
domain, ontology-based design, intelligent system, multi-agent sys-
tems, parallel systems, information search, logical inference.

I. INTRODUCTION

A. Objective and Relevance of the Work

The objective of this paper is the creation of technology of
design of efficient and flexible knowledge processing machines
of different knowledge-based systems and reducing of time and
overheads of such machines development.

Nowadays the application of intelligent systems becomes
more and more urgent in different spheres of human activity,
especially in those of them, where human being can be
dangerous or can invoke errors, caused by so-called human
factor. One of the most perspective branches in this area is the
development of knowledge-based systems [19]. Ontologies are
widely used as the formal basis of knowledge representation
is such kind of systems [5].

One of the most important components of such a system is
knowledge processing machine, which provides an opportu-
nity to solve different problems, related as with basic function-
ality of system (machine of information search and intelligent
problem solver), so as with providing of correctness of system
workability itself (information garbage collection, knowledge
base quality enhancement etc.) and with providing of system
evolution automation. It should be noted, that tasks, solved by
any of knowledge processing machine components may not
be explicitly formulated. Examples of such kind of tasks are
information garbage detection and deleting, knowledge base
optimization and so on.

Approaches to problem solvers development can be divided
into two main classes:

• problem solution using stored programs. This case
supposes that system already contains a program of given
problem class solution, so solution reduces to search
of that program and its interpreting with given input
data. This class includes also systems, which use genetic
algorithms [26], [37] and knowledge processing models,
based on neural networks [22], [30].

• problem solution in conditions, when solution program
is unknown.This case supposes that there may not be a
program of given problem class solution, so it is necessary
to apply additional methods of problem solution search,
which are not oriented on the narrow class of tasks
(for example, halving method, depth-first and breadth-
first solution search method, method of random solution
search, trial-and-error method, method of dividing tasks
into subtasks, so on), as well as different models of logical
inference (classic deductive [25], inductive [42], [43],
abductive [25]; models, based on fuzzy logic [44], [21],
[35], temporal logic [38], so on).

So, there are a lot of approaches to development of differ-
ence knowledge processing machines for different computer
systems, including intelligent problems solvers, many of which
are successfully implemented and being actively used.

Let’s consider two main historically formed approaches to
knowledge processing machines development.

First approach supposes that system contains fixed knowl-
edge processing machine (for example, logical inference ma-
chine), and afterward there can be added a knowledge base,
content of which is defined by subject domain, with which
system will work. Such systems were named "empty" expert
systems [46] or expert system shells [8]. This approach was
generally used for development of relatively simple systems
and in present time has no wide application.

Second approach, popular in present time, supposes using
of software tools for access to information, stored in some
knowledge base, which are compatible with different popular
programming languages. This approach is widely used, for ex-
ample, in systems, based on the W3C standards [18]. Structure
of knowledge processing machine, based on that approach if
defined by the developer in every case and is not regulated
by any standards. Such an approach is more flexible, but
lack of unification in knowledge processing machine structure
and development process leads to inconsistence of machine
components if they are designed by different developers. The
result is a duplication of the similar solutions and rising of
overheads during the development and support process.

It is evident that every intelligent system needs its own
unique knowledge processing machine, which considers that
system features and supposes an opportunity of its fast ad-
justment in case of necessary. But most of modern systems
has fixed knowledge processing machine, which is able to
solve problems from small limited class (for example, execute
deductive logical inference, based on the simple if-then rules).



In the same time, the actual question is how to use different
problem solution methods in one system in one time. The
actuality is caused by high demand of systems, which can work
autonomously in unpredictable conditions (for example, in
open space or other places, which are unsuitable for humans).
Systems, which use fixed set of algorithms cannot satisfy that
requirement, so the next actual question is how to provide
an opportunity of fast just-in-time enhancement of system
abilities.

For example, it is evident, that for even simple autonomous
system functioning there must be abilities of decision-making
in conditions of uncertainty (for example, logical inference,
as reliable, so as fuzzy and probabilistic); of analyzing of
signals, received from different sensors, including tools for
image processing; of analysis of the consequences of its own
activity with the possibility of automatic adjustment of next
acts of this activity; of predicting of the future environment
states on the basis of the collected data, so on.

It is important, that we are not talking about the creation of
a single universal knowledge processing machine, implement-
ing all possible models and solve all possible problems. We
are talking about the development of models and means that
would support the creation of flexible and efficient knowledge
processing machine of different systems within an acceptable
timeframe.

B. Problems, Need to be Solved

In spite of the fact that there are a lot of models, methods
and means of the knowledge processing, many of which have
been successfully implemented in various systems, there still
are:

• lack of common universal principles, underlying the im-
plementation of various knowledge processing models
leads to a lot of duplications of similar solutions in
different systems and the inability to use the solutions,
implemented in one system, in other systems. As a
consequence, the development of each such machine has
very high labor content, periods of their development are
too large, it is not possible to use a variety of problem-
solving models within one system;

• developed knowledge processing machines are not flexi-
ble, i.e. it is very difficult or even not possible to supple-
ment developed machine with new components or make
changes in already existing components. As the result, the
support of such machines is very labour-intensive, what
leads to their rapid obsolescence;

• the level of professional requirements for knowledge
processing machines developers is very high;

• attempts to unite a large number of developers in the
groups are not efficient enough due to the lack of hierar-
chy in the developed machines and, as a result, in groups
of developers. Difficulties in the coordination of actions
lead to additional overheads.

The consequence of these problems is the relatively high
labor intensity of the knowledge-based systems development
and maintenance, and as a result - their high cost.

In order to speak about the relevance of these problems, it
is necessary to specify the criteria for analysis and comparison

of knowledge processing machines, as well as to analyze the
existing approaches to the development of such machines.

C. Analysis of Existing Approaches to Specified Problems
Solution

We have specified the following basic criteria for analysis
and comparison of knowledge processing machines:

• flexibility and expandability. This criterion shows how
difficult it is and whether it is possible to make additions
or changes in the already developed machine;

• portability and platform independence, i.e. the eval-
uation of the complexity of the developed knowledge
processing machine model transfer to another platform
of such models interpretation, for example, change the
knowledge storage to another, etc.

• performance, that is the actual speed of operation of
such machines and necessary resources, such as memory
amount. Performance of knowledge processing machines
can be enhanced through the use of models and methods
of distributed and parallel knowledge processing;

• class of problems, which the machine is able to solve.
It is clear that the comparison of knowledge processing
machines, classes of solved problems for which differ
significantly, by other specified criteria has no sense.

Further, because this paper is not devoted to the design of
a single knowledge processing machine, and about the models
and means, providing the development of such machines, it is
necessary to specify the requirements for such kind of models
and means:

• the ability to consider each designed model on different
levels of the hierarchy;

• existence of the libraries of compatible components of
knowledge processing machines of various levels;

• support of the activity coordination of developers’ of
different professionalism and responsibility levels (due to
the hierarchy too);

• availability of automation of changes in already devel-
oped machines, existence of verification tools and their
components, as well as means of automatic correction of
identified deficiencies;

• providing of developed machines platform independence,
which significantly increases the duration of their life
cycle. This assumes not only already became traditional
platform independence of programs, but also platform
independence of components of whole knowledge pro-
cessing machines, their specifications, etc.

• flexibility of the proposed models and means, which im-
plies the ability to make changes in the already developed
components and machines, and simplifies staff turnover
due to the high level of automation of documentation
means and high requirements level for the documentation
of each component, as well as the availability of means
of developers’ information support and/or training;

• availability within the technology of means, fixing the
current state of development object, as well as its devel-
opment plans and the changes history;

Thus, for the development of universal models and means
of knowledge processing machines development, which satisfy
the above requirements, it is necessary to provide:



• the ability of integrating and coordinated functioning of
all components of the knowledge processing machine
within the same system;

• the ability to integrate different approaches within each
of the components, for example, different approaches to
problems solution. In this case, the class of problems,
solved by the system, can be significantly expanded, for
example, through the use of reliable and probabilistic
inference, depending on the given task.

• the ability of knowledge processing machine supplement-
ing with new components without significant overheads;

• the ability of parallel asynchronous solution of various
problems within a single knowledge processing machine.
Concrete model of parallelism used in the solution of a
problem is largely determined by the problem itself. Thus,
the technology must provide the ability to implement any
parallelism model;

Currently in the development of knowledge-based systems
the W3C standards are widely used. In particular, the OWL 2
[14] standard is used for semantic knowledge representation
and RDF [15] standard is used for representing knowledge in
form of semantic networks.

To access the data, presented in RDF models the SPARQL
protocol and the same name language are used [17]. As the
next step in relation to the SPARQL language the declarative
query language Cypher can be regarded, which was designed
by the creators of Neo4j storage [2].

Considered SPARQL and Cypher languages provide only
access to stored knowledge, knowledge processing itself is
carried out at the level of application, which is working with
a repository of knowledge.

There are a lot of implementations of the so-called semantic
reasoners, performing logical inference on the base of ontology
represented in OWL format, as well as tools for creating and
editing of ontologies. A full list of such tools, recognized by
the W3C consortium, can be found at [13]. As seen from the
table on it, the most of represented tools are capable to perform
only the direct inference on the basis of the relations, described
in the ontology.

Thus, it can be concluded that currently within the consor-
tium were developed efficient means of knowledge represen-
tation, knowledge access and logical inference mechanisms,
based on the ontologies, represented in this form. However,
there is no common methodology and technology of knowl-
edge processing machine design that causes a large amount
of duplication and significantly increases the complexity of
application development based on this representation. Reusing
of solutions applicable to one system is not possible in most
cases for the same reason.

Among integrated approaches to knowledge processing
machines development the IACPaaS project can be considered
[32], which is actively developed in present time. The aim of
this project is to develop cloud platform to build on its base
intelligent services for various purposes.

Integrated approaches to the knowledge processing ma-
chines design for intelligent systems of different classes, are
actively developed in Novosibirsk city [39].

Problems of integration of different solutions, including
related to the knowledge processing are also considered in [48].

Component design of knowledge-based intelligent systems
is the subject of [23] article, in which the necessity of accu-
mulation and reuse of the various components of intelligent
systems is justified.

Analysis of the described approaches shows that the prob-
lems formulated in this paper are not solved completely in
any of these approaches. This is largely due to the lack of
a unified basis for the formal representation of all kinds of
knowledge, including various types of programs, the lack of
strict principles of the knowledge processing machine design
and means for support of the developers of these machines and
their components.

D. The Proposed Approach

Within this article we propose to use an ontological ap-
proach to solve given problems, in this case - the ontological
approach to the design of knowledge processing machines. In
general, the ontological approach involves the development of
(1) the ontological model of the class of designed artifacts,
(2) the ontology of design, describing the activities aimed at
the artifacts development and methodology of development and
(3) the ontological model of means to support the development
of artifacts of given class throughout all stages of the artifact
lifecycle.

Thus, to solve the problems in sphere of the knowledge
processing machines development described above we need to
develop:

• unified ontological model of the knowledge processing
machine, having the properties of flexibility, modularity,
platform independence, and allows to implement on the its
basis any of existing models and methods of knowledge
processing, including parallel and asynchronous;

• ontology of knowledge processing machines design, that
is based on the specified model and includes a description
of the methodology of design and formal typology of such
machines’ developers’ actions;

• ontological model of the system of knowledge processing
machines design support, built on the basis of specified
model, and designed by the described methodology.

E. Tasks to be Resolved for Proposed Approach Implemen-
tation

There several tasks to be resolved for proposed approach
implementation:

• to develop a model of the knowledge processing machine
based on the system of ontologies which, firstly, will
provide the flexibility of these machines, and secondly,
would make the complex knowledge processing machines
more productive due to parallel execution of certain
processes, thirdly, will provide platform independence of
developed machines;

• to develop an ontology, describing the activities of various
subjects in the computer system memory, including the
description of actions and tasks;



• to develop on the basis of this ontology means to coordi-
nate the activity of the various components of knowledge
processing machines;

• to develop a universal basic programming language,
which does not depend on the interpretation platform and
allows it to build on the its basis higher-level languages
and their interpreters. To do this, the specified language
must be built on the basis of the above-mentioned ontol-
ogy that describes the activities of the different subjects.
This will provide the independence of programs building
principles from the programming language level, which
is determined primarily by the operators’ typology;

• to develop and implement an ontological model of this
programming language interpreter;

• to develop an ontology of knowledge processing machines
design, including the formal description of such machines
developers’ activities;

• to develop ontological model of the means of knowledge
processing machines design support, built on the basis of
specified model, and designed by the described method-
ology.

As a formal basis for the development of all specified
models we will use SC-code - a format of unified knowledge
representation in the form of homogeneous semantic networks
with set-theoretic interpretation, used in OSTIS Technology
[29]. Nodes of such a semantic network were named sc-nodes,
connections - sc-connectors (sc-arcs, sc-edges). Within this
technology is defined the concept of an ontology as subject
domain specification [34], their typology is released. In this
regard, further we will not talk about the formation of on-
tologies that describe a set of concepts, we will talk about
the formation of the subject domains and its specifications,
implying that this process includes the formation of all the
necessary ontologies.

Computer systems, based on OSTIS Technology were
named ostis-systems, due to that we will talk about the
knowledge processing machines of ostis-systems.

As a basic programming language the SCP Language,
described in the same paper, will be used. Programs of that
language are also stored in the form of SC-code constructions.
Thus, the task of the basic programming language development
is reduced to clarification of the SCP Language evolving it
to meet additional requirements discussed above. The use of
this language will provide platform independence for devel-
oped knowledge processing programs. In addition, the SCP
Language also has a number of advantages, which will be
discussed in details below.

Model of knowledge processing machine will be build
on the basis of multi-agent approach [47], [31], also it is
assumed that the interaction of the agents will be performed
exclusively by means of semantic memory, which stores the
SC-code constructions (sc-memory). Such an approach would
provide the flexibility and modularity of developed machines,
as well as provide the ability of parallel execution of different
knowledge processing processes. In addition, in the case of
implementation of agent programs on platform-dependent level
(not in the SCP Language), such an approach would eliminate
the need of the implementation of direct agent communication
mechanisms, which have to be implemented using various
programming languages.

The effectiveness of multi-agent systems is justified by the
use of such systems in various fields [10]. Currently, there are
a lot of agent-based modeling environments. A detailed review
of these environments is given in the works [12], [11].

In order to build a strict ontological model of multi-agent
system, which can be used as a basis for knowledge processing
machines design, it is necessary to specify a model of each
component included in its composition, namely:

• model of agent itself, which is a member of the multi-
agent system;

• model of the environment in which agents are, at the
events in which they react, and with which they can act
[20].;

• model of the agents’ communication, and in particular,
the model of agents’ activity coordination and resolve
conflicts;

A formal model of agents’ communication was proposed in
[45], but for the application of this model within the proposed
approach it is necessary to specify each of its components:

• principles of the messages exchange between agents,
i.e. the way in which these messages are sent from
agent to agent. The proposed approach to messaging
uses sc-memory for messaging. This approach can be
considered as a development of the idea of «blackboard»,
proposed in [9].;

• typology, semantics and pragmatics of such messages,
i.e. the sense of the transferred information and the
purpose of such an interaction. Attempts to clarify the
mentioned concepts carried out in the ACL and KQML
standards [1], [4].;

• principles of agents’ activity coordination. Several
approaches to coordination were considered in [6], [16],
[3].

In addition, this work uses several ideas related to im-
proving of the data and knowledge processing efficiency,
considered in the works [24], [41].

Let’s enumerate those subject domains, development of
which is necessary to resolve tasks given above:

• Subject domain of actions and tasks
• Subject domain of actions executed in semantic memory

of ostis-system (actions in sc-memory)
• Subject domain of agents, which work in semantic

memory of ostis-system (sc-agents)
• Subject domain of actions and actions specifica-

tions of basic knowledge processing machine (Abstract
scp-machine)

• Subject domain of abstract scp-machine agents and
corresponding microprograms

• Subject domain of knowledge processing machines de-
velopers’ actions

• Subject domain of incorrectness in scp-programs

Each of the described subject domains will be considered
in details below. In addition, all subject domains and corre-
sponding ontologies, presented in this paper, were described
with SC-code and included in the relevant sections of the IMS
Metasystem knowledge base [7].



II. UNIFIED ONTOLOGY-BASED MODELS OF
KNOWLEDGE PROCESSING

A. Unification of Formal Means of Description of the
Various Subjects’ Activity in Semantic Memory

In order to be able to formally describe the transfor-
mations, performed by knowledge processing machine, we
have designed Subject domain of actions and tasks, and the
corresponding integrated Ontology of actions and tasks, as
well as all ontologies of particular type. Within that subject
domain such general concepts are researched as an action,
a subject, an object of action, a task and its solution, etc.
Further these concepts are used to develop a formal means
of agents’ coordination in the shared memory, as well as the
programming language, oriented on the semantic networks
processing and underlying the proposed approach.

Given subject domain and its relation to other works on
similar topics were presented in [50], so we will take a closer
look only on a few basic concepts which are studied in that
subject domain and provide the basis for some of the solutions
presented below.

We consider the class of actions concept and particular
types of that concept:

class of actions
= set of actions, similar in one way or another
<= family of subsets*:

action
<= partitioning*:

{
• class of autonomous actions
• class of non-autonomous actions
}

The autonomy of an action is determined regardless of
exactly how the execution of concrete actions that belong to
this class is performed.

Every action, which is member of the class of autonomous
action is executed regardless of whether the specified action
is a part of the decomposition of a more general action. When
such an action is executed the fact that this action precedes any
other actions or follow them (that is specified by the relation
actions sequence*) must not be taken into account.

If any of these conditions is not succeeded, the autonomy
of the action is broken too.

Thus, autonomous action is semantically consistent act
of transformation, executed by some subject, including, for
example, in semantic memory.

To each action can be assigned some subject that executes
the action. In relation to ostis-system we can consider concepts
of the internal and external subject, and the system itself is
considered as a subject of some activity too.

For the detailing of some action execution process we
have introduced such relations as action decomposition*, sub-
action*, action sequence* and others.

It is important to note that the use of the proposed
formal means of the different subjects’ activity description at

different levels will not only provide the universality and the
"clarity" of this description due to the use of the most general
concepts, but also the provide possibility of implementing
any parallelism model at any level, from parallel execution of
operators within the same program, up to agents’ communica-
tion entire groups in shared semantic memory. The possibility
of implementation of a particular model of parallelism in this
case is determined only by the characteristics of the problem
being solved.

Along with the classes of actions themselves within the
given subject domain are also studied various classes of action
specifications (semantic neighborhoods [34]), such as a task,
question, plan, program and solution (protocol).

A task is considered as formal description of the conditions
of a task or problem, that is, in fact, a formal specification
of an action, aimed at the solution of this task or problem,
which is sufficient to execute this action by any subject.
Depending on the specific class of tasks, the internal state of
the intelligent system or the required state of the environment
can be described.

Each plan is a semantic neighborhood, key sc-element’
of which is an action for which supposed details of its
executing process are described. In the description of the plan
a procedural and declarative approach can be used. In the
case of a procedural approach appropriate action is specified
by its decomposition into more specific sub-actions and the
necessary specification of the sub-actions is given. In the case
of the declarative approach plan specifies a set of sub-goals
(e.g. using logical statements), the achievement of which is
necessary to execute the appropriate action. In practice, both
considered approach can be combined.

Each program is a generalized plan of the execution
of actions that are members of appropriate class, that is,
the semantic neighborhood, which key sc-element’ is a class
of actions, for elements of which details of their execution
process are given.

B. Typology of Actions in Semantic Memory

Special attention should be paid to actions, executed in the
semantic memory of a computer system (sc-memory). Actions
of this class are studied within the Subject domain of actions
executed in the abstract unified semantic memory and the
corresponding ontology.

Every action in sc-memory is a sign of a transformation,
performed by some subject (or subjects collective), and aimed
on the sc-memory transformation. Specification of action after
its execution may be included in the protocol of some task
solution.

Transformation of the knowledge base state includes infor-
mation search, involving (1) the localization of the response to
the request in the knowledge base, an allocation of the response
structure and (2) translation of the response into some external
language.

Set of actions in sc-memory consists of signs of the actions
of various kinds, the semantics of each of which depends on
the specific context, i.e., orientation of the action on some
specific objects and action membership to some particular class
of actions.



It should be clearly separated:

• Each concrete action in sc-memory, which is a sign
of process that transforms sc-memory from one state to
another;

• Each type of action in sc-memory, which is a class of
the same type (in some sense or another) of actions;

• sc-node, denoting a specific action in sc-memory;
• sc-node, denoting a structure that is the description,

specification or setting of the appropriate action;

Fragment of set-theoretical ontology, which specifies the
concept of action in sc-memory using the SCn language [7]:

action in sc-memory
<= inclusion*:

process in sc-memory
=> inclusion*:

• action in sc-memory, initiated by question
• action of ostis-system knowledge base editing
• action of ostis-system mode setting
• action of editing of the file stored in sc-memory
• action of interpretation of the program stored in

sc-memory

C. Unification of Model of Subject, Performing Transforma-
tions Within Shared Semantic Memory

The only kind of subjects that perform transformations in
the sc-memory, we assume sc-agents. For a formal definition
of sc-agent concept we use the previously introduced concept
of a class of autonomous action. So, an sc-agent is some entity
that can perform actions in the sc-memory, which are members
of some particular class of autonomous action. Within OSTIS
Technology there was developed Subject domain of abstract
sc-agents and the corresponding set of ontologies, specifying
the notion of sc-agent and related concepts, including formal
means of providing synchronization of actions executed by
sc-agents in sc-memory.

Autonomy of actions, executed by each sc-agent presup-
poses that each sc-agent reacts on the corresponding class
of situations and/or events in the sc-memory, and performs a
certain transformation of sc-text (SC-code text) in the semantic
neighborhood of the processed situation and/or event. Thus
each sc-agent usually has no information about what other
sc-agents are currently presented in the system and interacts
with other sc-agents only by forming messages in shared
sc-memory. That message can be, for example, a question,
addressed to other sc-agents in the system (not known exactly
to which of them), or an answer to the other sc-agents question
(again, not known of which agents exactly).

It is important to note that the end user of the ostis-
system in terms of knowledge processing is also considered
as the sc-agent, forming messages in sc-memory by executing
elementary actions, provided by user interface. In the same
manner ostis-system interaction with other systems and the
environment in general is performed. All information incomes
the ostis-system and outcomes the ostis-system exclusively
through the relevant interface sc-agents. In the proposed ap-
proach, direct access to the sc-memory of the end user or other
external actors is not allowed.

Here are some advantages of the proposed approach to the
organization of knowledge processing in sc-memory:

• because of the processing is performed by the agents
that can exchange messages only through shared
memory, adding a new agent or removing (deactiva-
tion) of one or more existing agents usually does not
lead to changes in other agents because the agents
does not exchange messages directly;

• agents often work in parallel and independently from
each other, executing different actions in sc-memory;
thus even a significant increase of the agents number
in one system does not lead to reduction of its
performance;

• agents specifications and, as will be shown below,
their programs can be written in the same language
with processed knowledge; this fact significantly
reduces the list of special means, intended for the
design of such agents and their collectives, and
simplifies the whole system design process due to
use of more versatile components.

Since it is supposed, that copies of the same sc-agent
or functionally equivalent sc-agents may work in different
ostis-system, being physically different sc-agents, it is rational
to consider properties and typology of not sc-agents but the
classes of functionally equivalent sc-agents, which we call
abstract sc-agents. Concepts of sc-agent and abstract sc-agent
are the maximal classes of studying objects within the subject
domain considered in this section.

Thus, the abstract sc-agent is a certain class of func-
tionally equivalent sc-agents, various items of which can be
implemented in different ways. Each abstract sc-agent has
corresponding specification.

Typology of abstract sc-agents and means of their specifi-
cation are considered in details in the work [49].

Let’s consider the general typology of abstract sc-agents,
which is a fragment of the set-theoretic ontology of the Subject
domain of abstract sc-agents, presented in the SCn-code:

abstract sc-agent
<= partitioning*:
{
• non-atomic abstract sc-agent
• atomic abstract sc-agent
}

<= partitioning*:
{
• internal abstract sc-agent
• effectoral abstract sc-agent
• receptoral abstract sc-agent
}

<= partitioning*:
{
• non scp-implementable abstract sc-agent
<= partitioning*
{
• effectoral abstract sc-agent
• receptoral abstract sc-agent
• abstract sc-agent of scp-program interpreting
}



• scp-implementable abstract sc-agent
}

<= partitioning*:
{
• abstract sc-agent of scp-program interpreting
• program abstract sc-agent
<= partitioning*:

{
• effectoral abstract sc-agent
• receptoral abstract sc-agent
• scp-implementable program abstract sc-agent
}

• abstract sc-metaagent
}

<= partitioning*:
{
• platform-dependent abstract sc-agent
=> inclusion*:

non scp-implementable abstract sc-agent
• platform-independent abstract sc-agent
<= partitioning*:

{
• abstract sc-metaagent
• scp-implementable program abstract sc-agent
}

}

D. The Formal Means of Describing the Actions and Ac-
tion Specifications of Basic Machine of Unified Semantic
Networks Processing

SCP Language is offered as the base language to write pro-
grams, which describe sc-agent activity within the sc-memory.

SCP Language is the graph procedural programming lan-
guage, developed for efficient processing of homogeneous
semantic networks with set-theoretic interpretation, coded us-
ing SC-code. SCP Language is the language of the parallel
asynchronous programming.

The language of the submission of data for SCP Written
(scp-programs) is the SC-Code. This fact allows us to ensure
the independence of the programs implemented in the language
of SCP on their interpretation of the platform, in connection
with which the majority of the program sc-agents to be realized
exactly in the specified language. However, it is obvious that
in such a case, the system should also be implemented in a
platform-dependent sc-level agents, carrying the interpretation
SCP language programs. This restriction is taken into account
in the typology of abstract sc-agents provided above.

The language of the representation of SCP Language
programs (scp-programs) is the SC-code. This fact allows
to ensure the independence of the programs implemented in
the SCP Language from their interpretation platform, so that
variant of the sc-agents program implementation is to be major
within proposed approach. However, in that case, there should
also be implemented platform-dependent sc-agents, carrying
out the interpretation of SCP Language programs. This fact
was taken into account in the typology of abstract sc-agents
provided above.

SCP Language itself is based on the SC-code, so the
scp-program may also be the processing object for other

scp-programs, including first-mentioned program itself. Thus,
SCP Language provides the possibility of reconfigurable soft-
ware creating. However, to enable the reconfiguration of the
program directly in the interpretation process it is necessary
to ensure on the SCP Language interpreter level (Abstract
scp-machine) the uniqueness of each executable copy of the
original program. This executable copy, generated on the base
of scp-program, was named scp-process. Adding sign of some
action in sc-memory in the scp-process set guarantees that in
the decomposition of that action there will be only signs of
elementary actions (scp-operators), that can be interpreted by
the implementation of Abstract scp-machine.

SCP Language is considered as an assembler for grapho-
dynamic computer, which is oriented on the semantic networks
processing and storing.

Actually development of SCP Language was not the objec-
tive of this work, because this language was already developed
and described in details, for example, in [27].

Within this work we discuss the problem of the SCP
Language adaptation to modern level of knowledge processing
machines models and design tools and development of the
Subject domain of actions and the action specifications of
abstract scp-machine, in which we study all the concepts
related to the given language. The mentioned subject area is
particular to the Subject area of actions in sc-memory, because
each scp-operator is a sign of elementary action in sc-memory.

Within the considered subject domain are allocated addi-
tional classes of structures (sc-constructions) [34] to work with
which some scp-operators are oriented. These classes are single
element sc-construction, three element sc-construction, five
element sc-construction, and sc-construction of non-standart
type.

The maximal class of the researched objects within speci-
fied subject domain is an scp-program. Each scp-program is
a generalized structure, describing one of the possible decom-
position variants of the given class of action in sc-memory.
In fact, each scp-program is a description of the sequence of
elementary operations to be executed in the semantic memory,
to execute a more complex action of a given class.

A particular case of scp-program is an agent scp-program.
scp-programs of this class are the programs of knowledge
processing agents, and has fixed set of arguments.

An scp-process is an action in sc-memory that uniquely
describes a particular act of scp- program execution with the
given input values. If the scp-program describes an algorithm
for a problem solving in a general way, the scp-process is a
sign of a specific action that implements the algorithm for the
specified input parameters.

In fact, scp-process is a unique copy, created on the
base of the scp-program in which each generated sc-constant
corresponds to the sc-variable in that scp-program [28].

Membership of some action in the scp-process set guaran-
tees that in the decomposition of the action only elementary ac-
tions signs (scp-operators) will be attended, so that action can
be interpreted by the implementation of Abstract scp-machine.

Each scp-operator (scp-process operator) is a sign of an
elementary action sc-memory. Arguments of scp-operator will



be called operands. The order of operands is indicated by the
relevant role relations (1’, 2’, 3’, and so on). The type and the
meaning of each operand is specified by various subclasses
of the scp-operand’ role relation. In general, the operand of
the scp-operator could be any sc-element, including a sign of
scp-program, including the program containing that operator
itself.

Each scp-operator must have one or more operands, and
there must be specified scp-operator (or more) to be executed
next. The exception to this rule is an scp-operator of the
program execution termination, which does not contain any
operands and after which no scp-operators can be executed
within this program.

Let’s consider the of fragment set-theoretical ontology that
describes the general typology of the scp-operators presented
in the SCn-code:

scp-operator
<= inclusion*:

action on sc-memory
=> family of subsets*:

scp-operator atomic type
<= partitioning*:

{
• scp-operator of generation
• scp-operator of associative search
• scp-operator of erasing
• scp-operator of condition check
• scp-operator of operand values operating
• scp-operator of scp-processes management
• scp-operator of sc-memory events management
• scp-operator of files content processing
• scp-operator of locks management
}

Membership of arguments to the scp-operator is specified
using subclasses of role relation scp-operand’. Fragment of
set-theoretical ontology that describes the typology of the
scp-operands roles presented in SCn-code:

scp-operand’
<= inclusion*:

action argument’
∈ non-basic concept
∈ role relation
<= partitioning*:

{
• scp-constant’
• scp-variable’
}

<= partitioning*:
{
• scp-operand with fixed value’
• scp-operand with unassigned value’
}

<= partitioning*:
{
• constant sc-element’
• variable sc-element’
}

=> inclusion*:

• forming set’
• erasing sc-element’
• sc-element type’ /* further is partitioned by the

sc-elements typology*/

Most of the advantages of the basic model of SC-code texts
processing occur due to its following main features:

• texts of SCP Language programs are written using
the same unified semantic networks as processed
information;

• approach to the description and interpretation of the
scp-programs is based on common principles of the
various subjects’ activities description, in particular,
it is supposed to create a unique scp-process at each
scp-program execution.

These advantages are:

• in one time in the shared memory can be executed
several independent processes, wherein the processes
corresponding to the same scp-program can be exe-
cuted even on different servers in case of distributed
realization of sc-model interpreter (interpretation
platform of computer system sc-models).

• SCP Language allows to perform concurrent asyn-
chronous calls of subroutines (create subprocesses
within scp-processes), as well as to perform parallel
scp-operator execution within one scp-process;

• As scp-programs are written using SC-code, trans-
fer of sc-agent, implemented on the base of SCP
Language, from one system to another reduces to
simple transfer of the knowledge base fragment,
without any additional operations that depend on the
interpretation platform;

• the fact that the sc-agents’ specifications and their
programs can be written in the same language as the
processed knowledge, significantly reduces the list of
special funds intended for the knowledge processing
machines design, and simplifies their development
through the use of universal components;

• the fact that for the interpretation of scp-program
the corresponding unique scp-process is created,
allows to optimize the execution plan as much as
possible (1) before its implementation and (2) even
directly during the execution without the potential
danger to break the general-purpose algorithm of the
entire program. Moreover, such an approach to the
programs design and interpretation allows to speak
about the possibility of self-reconfigurable programs
creating;

We cannot say that the idea of creating of a unique process,
based on a program, for each act of its execution is a funda-
mentally new and is only implemented in the SCP Language.
A similar approach is used in most modern systems, based
on the von Neumann architecture and oriented on the work
with traditional linear memory. In the discussed in this paper
models and traditional systems both, this approach allows
to speak about the possibility of the process reconfiguration
during its execution, and, in the limit, about self-reconfigurable
processes.



However, such an approach used in to semantic memory
has a significant advantage, which consists in the such memory
associativity. Indeed, in traditional memory access to the data
is carried out exclusively by the address. In the case of
reconfigurable software development address of each fragment
in the neighborhood of which the change is performed, or at
least the structure of the reconfigured process must be known
to the process, which performs such a reconfiguration. This
means, that a sense of a single piece of information in the tradi-
tional memory almost never can be resolved correctly without
pre-known context. This fact leads to a great complexity of
reconfigurable programs development, reducing of number of
their application fields, and the high level of dependence of
reconfiguration performing programs on the changes made
by developers of software, in which this reconfiguration is
performed. Using of the associative memory and the unified
formal semantic basis for the description of any kind programs
allows to eliminate these restrictions. Access to the elements
within the associative memory is performed not on the basis
of addresses, but by the connections between elements, and
the number of key nodes, to which the binding is carried,
is relatively small. Specification of each element within such
memory is constructed by forming appropriate links, which
can then be analyzed within the third-party process, i.e., the
semantic of each element can be resolved by any process by
analyzing the relations of considered elements with others. The
number of such connections is not logically limited, so each
element can be specified with the required level of detailing.
In addition, the construction of SCP Language programs and
higher-level languages programs bases on common formal
means of description of the activity of all kinds of subjects, due
to that the reconfiguration algorithms become more versatile
because general structure of the program and semantics of
transitions it in this case remains the same regardless of the
language level.

E. Unification of Formal Means of Synchronization of
Parallel Processes Execution in the Shared Memory

Because the only type of entities that perform the transfor-
mations in sc-memory are sc-agents, the general principles of
the synchronization of their activity are also considered within
the Subject domain of abstract sc-agents.

One of the concepts, researched in this subject domain
is the concept of process in sc-memory, which generalizes
the concept of action in sc-memory. Concept of process in
sc-memory memory is used to describe the principles of the
synchronization using terminology in accordance with the
literature on the subject, in which it is typically told about
the processes in the memory of the computer system.

Before talking about the general principles of the vari-
ous subjects’ activity synchronization in the sc-memory, it
is necessary to consider the typology of the processes in
the sc-memory, which is a fragment of corresponding set-
theoretical ontology. In that case we consider not a typology,
based on the semantics of the performing transformations
(such typology presented above for the class of action in
sc-memory), but the typology associated with distinguished
classes of processes, which use the same synchronization
mechanisms.

Typology of processes in sc-memory presented in SCn-
code:

process in sc-memory
<= partitioning*:
{
• process in sc-memory, corresponding to

platform-dependent sc-agent
<= partitioning*:
{
• process in sc-memory, which corresponds to

platform-dependent sc-agent and is not action
of abstract scp-machine

• action of abstract scp-machine
=> inclusion*:

action of scp-program interpretation
}

• scp-process
<= partitioning*:
{
• scp-process, which is not scp-metaprocess
• scp-metaprocess
}

}

In that work scp-metaprocess is the process in sc-memory
that describes the activity of sc-metaagent, which is imple-
mented with SCP Language.

To synchronize the execution of processes in sc-memory,
the proposed approach uses a lock mechanism. The lock*
relation links the sign of action in sc-memory with signs of
situational structures that contain sc-elements, locked for the
duration of that action or any part of this period. Each such
structure is a member of some lock type.

Three classes of sc-agents can be considered from the
synchronization mechanisms point of view:

• sc-agent of scp-program interpreting
• program sc-agent
• sc-metaagent

Mechanism of locks, described in this section is used to
synchronize the activity of the program sc-agents. This class
includes all the agents, responsible for the tasks, assigned
to a specific ostis-system, i.e. actually sc-agents of this class
provide ostis-system functionality.

The task of sc-agents of scp-program interpreting is the
maintenance of all described coordination rules (at the level
of SCP Language programs interpretation platform). Principles
of synchronization of agents of this class are more trivial than
in the case of program sc-agents.

The task of sc-metaagents is conflict resolution and opti-
mization of program sc-agents activity. Agents of this class
operate on a higher level, and to synchronize their activities
there are several special mechanisms, that will be discussed
below.

To use the terminology, which is common in the literature,
we will say that the process performs a transformation within
sc-memory (e.g. deleting or generation of sc-element, setting



or removing lock), meaning that the corresponding transfor-
mation is performed by some sc-agent and is a part of action
in sc-memory (i.e. process in sc-memory that describes the
transformations, performed in the sc-memory by the active
subject) to which mentioned sc-agent is linked by the execu-
tor* relation.

In the current version to synchronize the execution of
processes in sc-memory there are three lock types:

• full lock
• change lock
• deleting lock

Each structure, which is full lock, contains sc-elements,
viewing and editing (deleting or adding of incident
sc-connectors, deleting sc-elements themselves, content change
in the case of file) of which is prohibited for all sc-agents,
except sc-agent, performing appropriate action in sc-memory,
which is linked with the structure with lock* relation. In fact,
sc-elements falling within the full lock, corresponding to a
certain process in sc-memory, are temporarily absent for other
processes in the current state of memory.

In order to exclude the possibility of implementing of
sc-agents, which can make changes in the structure, describing
the locks of other sc-agents, all of the elements of these
structures, including structure sign itself (belonging to a set of
full lock, and any other lock type) and links of lock* relation
linking structure and the correspond action in sc-memory,
are added into the full lock, corresponding to this action in
sc-memory. Thus, each full lock has corresponded membership
loop, connecting it with the its sign itself.

Each structure which is member of change lock con-
tains sc-elements, change (deleting or adding of incident
sc-connectors, deleting of sc-elements themselves, content
change in the case of file) of which is prohibited for all
sc-agents, except sc-agent, executing the appropriate action
in sc-memory. However, viewing (reading) of these elements
is not prohibited for any sc-agent.

Basic principles of working with locks that do not depend
on the lock type:

• at one time one process in sc-memory may corre-
spond to only one lock of each type;

• at one time one process in sc-memory may corre-
spond to only one lock installed on some concrete
sc-element. Thus, the locked structures, correspond-
ing to the same process in sc-memory do not inter-
sect;

• at the end of the execution of any process in
sc-memory all locks, set by it, are automatically
removed;

• to improve the efficiency of the whole system, each
process at any moment shall lock the minimal re-
quired set of sc-elements, removing the lock from
each sc-element as it becomes possible (safe);

Each type of lock corresponds to a number of features and
algorithms that cannot be discussed in details in article format
and presented within the IMS Metasystem knowledge base [7].

If any process tries to set a lock of any type on any
sc-element, already locked by another process, on the one

hand, the lock cannot be set until another process releases
the mentioned sc-element; on the other hand, in order to allow
deadlock finding and resolving it is necessary to indicate the
fact that a process wants to get access to the sc-element,
blocked by any other process. A similar situation and the
approach to its solution for the processes in the traditional
memory described in [36].

Under the proposed approach, in order to be able to
specify which processes are trying to lock an already locked
sc-element, it is proposed, along with the lock* relation use the
planned lock* relation, fully analogous to the lock* relation.
The process, which corresponds the planned lock*, suspends
execution until the already set lock will not be removed, after
that the planned lock* becomes a real lock, and the process
continues execution in accordance with the general rules. In
the case when several processes plan to install the lock on the
same sc-element, also used the lock priority* relation, linking
the pairs of the planned lock* relation.

In the case of deleting attempt of some sc-element, process
can continue execution only when on that sc-element is not set
(or planned) any lock by some other process.

To implement this possibility every process can be corre-
sponded by set of deleting sc-elements*. Sc-elements, appeared
in that set, are available to processes, which have already set
(or plan to set) the lock on these sc-elements previously (before
attempting to delete them), and for all other processes these
sc-elements are considered to be deleted already.

In some cases, in order to ensure synchronization, it is
necessary to unite several elementary operations in sc-memory
into a single atomic action (transaction) for which it is
guaranteed that no third-party process will be able to read or
modify the sc-elements involved in this action, until the action
is complete.

In the proposed approach, seven transactions are consid-
ered. The implementation of them at the level of sc-models
interpretation platform is necessary to ensure compliance with
all the principles of working with the locks. A list of these
transactions and their specifications can be found in IMS
knowledge base [7].

Sometimes there can occur conflicts of two processes in
sc-memory. This is possible, for example, when each of these
processes is expected while the second process will unset lock
form the desired sc-element, without unsetting the lock set by
them on the same sc-element, access to which is required by
the second process. Eliminating such a deadlock is impossible
without the intervention of specialized sc-metaagent, which
has the right to ignore the locks, set by other processes.

In general, the problem of specific deadlock can be resolved
by performing the following steps by specialized sc-metaagent:

• rollback of several transactions performed by one of
the processes involved in the deadlock to provide the
second process access to the necessary sc-elements
and possibility to continue execution;

• waiting for the second process until the terminating
or until it unset all locks from sc-elements, access to
which is necessary for the first process;

• re-execution within the first process of all cancelled
operations and the continuation of its execution, but



with the changes in memory, made by the second
process.

As mentioned above, the described synchronization rules
are valid for the software sc-agents. For sc-metaagents all
sc-elements, including those which describe locks, planned
locks, etc., are fully equivalent to each other from the ac-
cess point of view, i.e., any sc-metaagent has access to any
sc-elements, even put into the full lock of some other process.
This is necessary in order to sc-metaagents be able to identify
and eliminate various problems such as the above-described
problem of deadlock.

Thus, the problem of synchronization of sc-metaagents
activity requires the introduction of additional rules.

Said problem is divided into two more particular:

• ensuring the synchronization of activity among the
sc-metaagents themselves;

• ensuring the synchronization of activity among
sc-metaagents and program sc-agents;

The first problem is solved by prohibiting parallel ex-
ecution of sc-metaagents. Thus, at any given time within
one ostis-system can exist only one process, corresponding to
sc-metaagent and being present entity (executing at present
moment).

The second problem is proposed to solve by introducing
additional privileges for the sc-metaagents during the access
to any sc-element.

The described mechanism of locks is applicable also in the
case where some transformation in sc-memory is performed
by the ostis-system user with means of the user interface
sc-agents. In terms of knowledge processing, user is also
considered as sc-agent, and therefore has the ability to lock
the sc-elements with locks of different type.

In conclusion, it should also be noted that there may be a
situation in which the execution of a process in the sc-memory
is interrupted due to occurrence of any error. In this case, there
is a possibility that the lock, set by that process will not be
unset as long as it will be made by the sc-metaagent, which has
discovered such a situation. However, at the level of sc-model
this problem can be solved only partially, in cases where
an error occured during the interpretation of scp-program,
it shall be reported to sc-metaagent by the scp-interpreter
(corresponding construction shall be formed in sc-memory).
Cases where there is an error at the level of the scp-interpreter
or sc-storage should be considered at the level of the sc-models
interpretation platform.

For sc-agents, which programs are implemented using SCP
Language, all the general principles of the organization of sc-
agents and users interaction in shared memory of ostis-systems
are applicable, but in that case there is a number of addi-
tional refinements, described in details in the IMS Metasystem
knowledge base [7].

F. Unification of Ontological Ostis-systems Knowledge Pro-
cessing Models

1) Ontological Model of Knowledge Processing Machine:
ontological knowledge processing machine model, proposed in

this paper, is built on the basis of the all principles described
above.

Ontological knowledge processing machine model built by
SC-code means (sc-model of knowledge processing machine),
is considered as an ontological model of multi-agent system
over shared memory. That memory acts as a communication
environment for the agents. Agents included in such a multi-
agent system, were named an sc-agents.

Using the earlier introduced terminology, we assume that
the sc-model of knowledge processing machine is a non-atomic
abstract sc-agent, which is the result of union of all the
abstract sc-agents, that are part of a particular ostis-systems,
into one. In other words, the sc-model of knowledge processing
machine is a collective of sc-agents, consisted in a given ostis-
system and perceived as a whole. For this reason, there is
currently no need to introduce the Subject domain of sc-models
of knowledge processing machines, as all such models are
researched within the Subject domain of abstract sc-agents.

Thus, there are several basic levels of detailing of any
knowledge processing machine:

• the level of knowledge processing machine itself;
• the level of non-atomic sc-agents that are part of the

machine, including particular knowledge processing
machines;

• the level of atomic sc-agents;
• the level of scp-programs, or programs implemented

on the platform level;

Such a hierarchy of levels allows to provide, firstly, the
possibility of component stage-by-stage design of the knowl-
edge processing machine, and secondly - the possibility of
designing, debugging and verification of machine components
at different levels, regardless of other levels, which greatly
simplifies the task of development of a knowledge processing
machine, reducing overheads.

In addition, on each level there is a probability that
some or all of the necessary components have already been
implemented by anyone previously and can be reused in the
developed machine. In details the methodology of machines
component design will be discussed below.

2) The semantic typology of computer systems knowl-
edge processing machines: classification of computer systems
knowledge processing machines can be performed according
to several criteria. Let’s consider a several variants of such a
classification, presented in SCn-code, and are part of the set-
theoretic ontology of subject domain, presented earlier.

According to the type of the computer system:

Typology of processes in sc-memory presented in SCn-
code:

knowledge processing machine
=> inclusion*:
• . . .
3 Knowledge processing machine of IMS

• knowledge processing machine of auxiliary computer
system
=> inclusion*:



• knowledge processing machine of computer
system interface
=> inclusion*:

• knowledge processing machine of
computer system user interface
• knowledge processing machine of

interface between computer system and
other computer systems
• knowledge processing machine of

interface between computer system and
the environment

• knowledge processing machine of subsystem of
some kind of components development support
=> inclusion*:

• knowledge processing machine of
subsystem of knowledge bases
development support
=> inclusion*:

machine of knowledge base
quality improvement
=> inclusion*:
• machine of knowledge base

verification
=> inclusion*:

• machine of search
and elimination of
incorrectness
• machine of search

and elimination of
incompleteness

• machine of knowledge base
optimization

• machine of information
garbage detection and
elimination

• knowledge processing machine of
subsystem of knowledge processing
machines development support
=> inclusion*:

• knowledge processing machine
of subsystem of knowledge
processing programs
development support
• knowledge processing machine

of subsystem of knowledge
processing agents development
support

• knowledge processing machine of subsystem of
computer systems and their components
development control

• knowledge processing machine of separated
ostis-system

According to the type of interpreted knowledge pro-
cessing models:

knowledge processing machine
=> inclusion*:

• machine of information search
=> inclusion*:

• machine of search of information, which
satisfies given specification

• machine of search of information, which
doesn’t satisfy given specification

• machine of detection that information, which
satisfies given specification, is absent

• machine of problem solution using stored programs
=> inclusion*:
• machine, providing neural models interpreting
• machine, providing genetic algorithms

interpreting
• machine, providing imperative programs

interpreting
=> inclusion*:
• machine, providing procedural

programs interpreting
• machine, providing object-oriented

programs interpreting
• machine, providing declarative programs

interpreting
=> inclusion*:
• machine, providing logical programs

interpreting
• machine, providing functional programs

interpreting
• machine of problem solution in conditions, when there

isn’t solution program
=> inclusion*:
• machine of depth-first solution search method
• machine of breadth-first solution search method
• machine, implementing trial-and-error method
• machine, implementing problem halving

method
• machine of problem solution using analogy
• machine of reduction of problem condition to

first-order predicate logic
• machine of logical inference
=> inclusion*:
• machine of deductive inference
=> inclusion*:
• machine of direct deductive

inference
• machine of inverse deductive

inference
• machine of inductive inference
• machine of abductive inference
• machine of fuzzy inference
• machine of temporal logical inference

According to the processing object, the goal of the
problem solution:

knowledge processing machine
=> inclusion*:
• machine of actually formulated problems solution
=> inclusion*:
• machine of given quantities values retrieval
• machine of given logical sentence validating

within given formal theory
• machine of given problem solution method

forming
=> inclusion*:
• machine of given sentence proof

forming within given formal theory



• machine of given task answer
verification
• machine of given task solution method

verification
=> inclusion*:

machine of verification of given
sentence validity within given
formal theory

• machine, providing decision-making support
=> inclusion*:

machine, providing selection from given set of
alternatives

• machine of classification
=> inclusion*:

• machine of classification of given entity within
the given set of classes
• machine of classification of given entities using

given set of attributes
• machine of natural language texts synthesis
• machine of natural language texts analysis
=> inclusion*:

• machine of natural language texts recognition
• machine of natural language texts verification

• machine of signal synthesis
=> inclusion*:

machine of speech synthesis
• machine of signal analysis

=> inclusion*:
machine of speech analysis
=> inclusion*:

machine of speech recognition
• machine of multimedia data processing

=> inclusion*:
machine of image analysis
=> inclusion*:

machine of images recognition

G. Ontological Model of Interpretation Machine of Knowl-
edge Processing Programs

On the basis of the considered ontological model of knowl-
edge processing machine models of knowledge processing
machines of a particular kind are built. One of the most
important among them is the ontological model of the interpre-
tation machine of the basic programming language for sc-text
processing (i.e. SCP Language).

This model is considered as a set of sc-agents on which
Abstract scp-machine is decomposed, i.e., atomic sc-agents,
implemented on the platform-dependent level. All these
agents are specified within the Subject domain of abstract
scp-machine agents and corresponding microprograms.

Decomposition of Abstract scp-machine, presented in the
SCn-code:

Abstract scp-machine
<= abstract sc-agent decomposition*:

{
• Abstract sc-agent of scp-programs embedding in

sc-memory
<= abstract sc-agent decomposition*:

{

• Abstract sc-agent of scp-programs actual
embedding in sc-memory

• Abstract sc-agent of scp-programs
preprocessing

}
• Abstract sc-agent of scp-processes creation
• Abstract sc-agent of scp-operators interpretation
• Abstract sc-agent of scp-programs interpretation

syncronization
• Abstract sc-agent of scp-processes destruction
• Abstract sc-agent of syncronization of events in

sc-memory and sc-memory realization
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of translation of sc-event

formed specification into internal
representation

• Abstract sc-agent of processing of event, which
initiates agent scp-program

}
}

To implement the proposed model of Abstract scp-machine
web-oriented realization of sc-models interpretation platform
was used, described in [40]. Detailed specification of the listed
agents is presented in the IMS Metasystem.

III. THE ONTOLOGICAL MODEL OF ACTIVITY, AIMED
AT KNOWLEDGE PROCESSING MACHINES DESIGN

As mentioned above, all of the platform-independent com-
ponents ostis-systems knowledge processing machines may
be represented using the SC-code. In this case we are talk-
ing about an sc-agent specification, and the full texts of
scp-programs, describing the algorithms of these agents.

Thus, the design of ostis-system knowledge processing
machine is reduced to the design of such a system knowledge
base fragment of special kind. In this regard, for the design of
knowledge processing machines can be used all the existing
means of knowledge bases development automation of the
OSTIS Technology, considered, in particular, in [33], as well
as the whole ontology of knowledge bases design.

Next, in is necessary to consider some aspects of the
development, specific to the knowledge processing machines.
These aspects include methodology of such machines design,
discussed in detail in [51], suggesting the six main stages of the
machine development, from the formation of the requirements,
to debugging and implementation of designed components, as
well as Subject domain of knowledge processing machines
developers’ actions and corresponding Ontology of knowledge
processing machines design (or rather, their sc-models).

In this paper we consider the typology of classes of actions,
aimed at the design and implementation of the ostis-system
knowledge processing machine in according to mentioned
methodology and are part of the ontology Ontology of knowl-
edge processing machines design.

It is important to note that according to the previously
presented knowledge processing machine model of any ostis-
system is an abstract sc-agent, and therefore the development
of the machine is reduced to the development of such an agent.



action. develop ostis-system knowledge processing machine
= action. develop abstract sc-agent
<= partitioning*:

{
• action. develop atomic abstract sc-agent
=> inclusion*:

action. develop platform-independent atomic
abstract sc-agent
=> inclusion*:

• action. decompose platform-independent
atomic abstract sc-agent into
scp-programs

• action. develop scp-program
=> abstract sub-action*:

• action. specify scp-program
• action. find in library an

scp-program, which satisfies given
specification

• action. implement specified
scp-program

• action. verify scp-program
• action. debug scp-program

• action. develop non-atomic abstract sc-agent
=> inclusion*:

• agent. decompose non-atomic abstract sc-agent
into particular sc-agents
• action. develop abstract sc-agent

}
=> abstract sub-action*:

• action. specify abstract sc-agent
• action. find in library an sc-agent, which satisfies

given specification
• action. verify sc-agent
<= partitioning*:

{
• action. verify atomic sc-agent
• action. verify non-atomic sc-agent
}

• action. debug sc-agent
<= partitioning*:

{
• action. debug atomic sc-agent
• action. debug non-atomic sc-agent
}

IV. THE ONTOLOGICAL MODEL OF SYSTEM OF
KNOWLEDGE PROCESSING MACHINES DESIGN SUPPORT

Among the tasks of system of knowledge processing ma-
chines design support are information and technical support
of such machines development, including ensuring the correct
and effective implementation of all stages provided by corre-
spondent methodology.

In the design of all components of ostis-systems similar
principles are used, some of them are shown in details in
[52]. One of the basic principles is the principle of use of
already implemented components of various kinds, already
available in the Library of OSTIS components, part of the
IMS Metasystem. All systems, built on the OSTIS Technology,
except of the Metasystem, we will be called child ostis-
systems.

Thus, each child ostis-system and each system, supporting
the design of some components class are closely linked with
the IMS Metasystem, in particular, with the Library of OSTIS
components, which is the part of the metasystem knowledge
base. It is supposed, that the library is not physically trans-
ferred into the child ostis-system, but the signs of required
libraries, and specification of these structures are part of
the knowledge base of the design support system for given
component class, as will be shown below.

The considered system of knowledge processing machines
design support itself is ostis-system too, and has the appro-
priate structure. Thus, this system model includes an sc-model
of the knowledge base, the sc-model of knowledge processing
machine and sc-model of user interface. Due to this approach,
in this system can be used, if necessary, all the agents, used
in other systems, such as information search agents.

The considered system can actually be used in three ways:

• as a subsystem within the metasystem of support of
intelligent systems design (IMS). This case supposes
the debugging of required components within the
metasystem and then transferring them to the child
system;

• as an independent ostis-system, designed exclusively
for the development and debugging of knowledge
processing machines components. In this case, the
designed components are debugged within that sys-
tem, and then have to be transferred to the child
ostis-system;

• as a subsystem within the child ostis-system. In this
case, components debugging is carried out directly
in the same system, in which they are supposed to
use and an additional transfer is not required.

Regardless of the selected case of system using, developed
components can be included in the Library of OSTIS compo-
nents.

An important stage in the life cycle of any software system
is its debugging. There are two fundamentally different level
of knowledge processing machine debugging:

• debugging on the sc-agents level;
• debugging on the scp-programs level;

In the case of debugging at sc-agents level, act of each
agent execution is considered as indivisible and cannot be
interrupted. In this way debugging may be performed for
atomic and non-atomic sc-agents both. Initiation of a particular
sc-agent, including a member of the non-atomic, is performed
by creating appropriate construction in sc-memory, thereby
debugging can be carried out at different levels of agents
detailing, up to atomic.

Debugging on the sc-agents level supposes the possibility
of force setting unsetting of lock, enabling or disabling of any
agents, etc., so agents of such debugging support system must
be sc-metaagents. Due to the fact that the proposed in this
paper model of interaction between agents uses the universal
approach of agent interaction through shared memory, the
considered system of agents’ design support can be used as
a basis for building of agents modeling systems with other



principles of communication, for example, the direct message
exchange between agents.

Debugging at the scp-program level is similar to the
existing modern approaches to procedural programs debugging
and suggests the possibility of breakpoints setting, single-step
program execution, etc.

Let’s consider the formal model of system of knowledge
processing machines design support. In the following part
of this chapter, speaking about this subsystem or any of its
components, we mean that we are talking about the sc-model
of described entity, that is, about its ontological model, built
with the SC-code means.

Subsystem of OSTIS knowledge processing machines de-
velopment support, and accordingly, its sc-model is decom-
posed into two particular:

Subsystem of OSTIS knowledge processing machines
development support
<= basic decomposition*:

{
• Subsystem of knowledge processing agents

development support
• Subsystem of OSTIS basic programming language

programs development support
}

These subsystems are decomposed in accordance with the
general principles of ostis-systems architecture. Next, we will
consider the main components of these subsystems.

Knowledge base of subsystem of knowledge processing
machines development support includes in addition to Kernel
and kernel extensions of knowledge bases sc-models, provided
on the OSTIS Technology level, and description of the ba-
sic unified text processing model (Abstract scp-machine) a
description of the key concepts, related to the scp-programs
verification and debug. Thus, the subsystem includes all the
necessary documentation for the developer of the various
components of knowledge processing machines.

Now let’s consider the basic concepts that are specific to
the knowledge base of subsystem of SCP Language program
design support.

In order to ensure the ability to debug scp-programs, within
the Subject domain of actions and actions specifications of
basic knowledge processing machine (Abstract scp-machine)
there is a number of additional concepts. In particular, to
enable the use of breakpoints within scp-programs appropriate
relative and absolute concept are introduced.

Links of quasybinary relation breakpoints* connect
scp-program with a set of sc-variables, corresponding to
scp-operators within this program. With each generating
of scp-process, corresponding to this scp-program, all the
scp-operators, corresponding to such variables will be added
in a set of breakpoint, i.e., the execution of the scp-process
will be interrupted when the each of these scp-operators will
be achieved.

Using of this relation defines the breakpoints for all
scp-processes generated on the base of a given scp-program.

To specify a breakpoint within the single scp-process, the
breakpoint set shall be used.

To enable scp-programs verification, Subject domain of in-
correctness in scp-programs and the corresponding ontologies
were developed.

A typology of such incorrectnesses:

incorrectness in scp-program
<= inclusion*:

incorrect structure
=> inclusion*:

error in scp-program
=> inclusion*:
• unachievable scp-operator
• potentially infinite loop

error in scp-program
<= partitioning*:
{
• syntax error in scp-program
• semantic error in scp-program
}

<= partitioning*:
{
• error in scp-program on the program level
• error in scp-program on the parameters set level
• error in scp-program on the operators set level
• error in scp-program on the operator level
• error in scp-program on the operand level
}

All of shown subject domains and their ontologies are
part of the knowledge base of the system of knowledge
processing machines design support. In addition, one of the
most important part of the knowledge base of the system of
knowledge processing machines design support is a library of
reusable components of such machines.

Reusable component of OSTIS is some ostis-system com-
ponent that can be used within other ostis-systems [52]. In this
work the general typology of these components (the library
structure) and the main principles to work with them are
considered.

If reusable component of abstract knowledge process-
ing sc-machines is platform-dependent reusable component
of OSTIS, its integration is made in accordance with the
instructions, provided by the developer and depending on
the platform, as well as in case of any component of this
kind. Otherwise, the integration process can be concretized
depending on the subclass of components of given type.

Let’s consider the structure of the Library of reusable
components of abstract sc-machines:

Library of reusable components of abstract sc-machines
= reusable component of abstract knowledge processing
sc-machines
<= partitioning*:
{
• Library of reusable abstract sc-machines
• Library of reusable atomic abstract sc-agents



• Library of reusable sc-text processing programs
}

The reusable abstract sc-agent (both atomic and non-
atomic, i.e. whole sc-machine) is the component, correspond-
ing to some abstract sc-agent that may be used in other
systems, possibly as a part of more complex abstract non-
atomic sc-agents. Each reusable abstract sc-agent should
contain all the information, necessary for the operation of the
corresponding sc-agent in the child system.

After the reusable atomic abstract sc-agent has been
copied to the child system, it is necessary to generate an
sc-node, indicating a particular sc-agent, working in that
system and which is member of the selected implementation
of abstract sc-agent, and add it in a set of active sc-agents if
necessary.

The structure of the Library of reusable atomic abstract
sc-agents:

Library of reusable atomic abstract sc-agents
= reusable atomic abstract sc-agent
<= partitioning*:

{
• Library of information search sc-agents
• Library of sc-agents of knowledge integration into

knowledge base
• Library of sc-agents of ontologies alignment
• Library of sc-agents of actually formulated tasks

solution planning
• Library of logical inference sc-agents
• Library of sc-agents of information garbage collection
• Library of coordinate sc-agents
• Library of sc-agents of high level programming

languages and correspondent interpreters
• Library of knowledge base verification sc-agents
• Library of knowledge base editing sc-agents
• Library of sc-agents of knowledge base developers

activity automation
}

The reusable sc-texts processing program is a compo-
nent corresponding to a program, written on an arbitrary
programming language, which is focused on the processing
of structures that are stored in the memory of ostis-system.
The priority in this case is the use of scp-programs because
of their platform independence, except the development of
some components of the interface when the full platform
independence is not possible (for example, in the case of
effector sc-agents and receptor sc-agents).

In turn, a reusable scp-program is a component, corre-
sponding to some enough universal scp-program, which can
be used as part of several sc-agents.

After the reusable scp-program was copied to the child
system, it is necessary to add it in a set of correct scp-programs
(correctness is verified if it enters the library of components
within the IMS).

A. The Ontological Model of Tools of Knowledge Processing
Machines Design Support

Let’s consider the structure of the relevant subsystems’
knowledge processing machines.

The structure of the knowledge processing machine of Sub-
system of knowledge processing agents development support:

Knowledge processing machine of subsystem of knowledge
processing agents development support
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of sc-agents verification
• Abstract sc-metaagent of sc-agent collectives

debugging
}

Abstract sc-agent of sc-agents verification
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of sc-agent specification verification
• Abstract sc-agent of verification of non-atomic

sc-agent specification consistency to specifications of
particular sc-agents in its composition

}

Abstract sc-metaagent of sc-agent collectives debugging
<= abstract sc-agent decomposition*:
{
• Abstract sc-metaagent of search all running processes,

which correspond to given sc-agent
• Abstract sc-agent of given sc-agent initiating using

given arguments
• Abstract sc-metaagent of given sc-agent activation
• Abstract sc-metaagent of given sc-agent deactivation
• Abstract sc-metaagent of setting of given type lock for

given process on given sc-element
• Abstract sc-metaagent of removing of all given

process locks
• Abstract sc-metaagent of removing of all locks from

given sc-element
}

Structure of knowledge processing machine of subsystem
of OSTIS basic programming language programs development
support:

Knowledge processing machine of subsystem of OSTIS
basic programming language programs development
support
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of scp-programs verification
• Abstract sc-agent of scp-programs debugging
}

Abstract sc-agent of scp-programs debugging
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of given scp-program starting using

given parameters set



• Abstract sc-agent of given scp-program starting using
given parameters set in single-stepping mode
• Abstract sc-agent of search of all breakpoints within

scp-program
• Abstract sc-agent of search of all breakpoints within

scp-process
• Abstract sc-agent of adding the breakpoint into

scp-program
• Abstract sc-agent of breakpoint removing from

scp-program
• Abstract sc-agent of adding the breakpoint into

scp-process
• Abstract sc-agent of breakpoint removing from

scp-process
• Abstract sc-agent of scp-process execution proceeding

on one step
• Abstract sc-agent of scp-process execution proceeding

till the breakpoint or ending
• Abstract sc-agent of scp-process information

displaying
• Abstract sc-agent of scp-operator information

displaying
}

B. The Ontological Model of User Interface of System of
Knowledge Processing Machines Design Support

Since the objects of design for the described system
are knowledge processing machines models, and particularly,
knowledge processing agents and programs represented in
SC-code, such a system can use the base means of external
representation of SC-code texts, for example, SCn or SCg
languages [7].

To visually simplify the process of verification and de-
bugging of knowledge processing machine components, an
approach is used which supposes, that only the minimum
required set of sc-elements is displayed at any given time to the
user of the system. For example, when one debug scp-process,
it is enough to display only scp-operators and connections
between them. If necessary, the user can manually request and
view the specification of the necessary scp-operator at the pro-
gram break moment. This approach underlies the algorithms
of all the agents of the described system.

Thus, currently, the user interface of system of knowledge
processing machines design support is represented by a set of
commands that allow a user to initiate activity of the desired
agent, which is part of the system. This set fully corresponds
the set of agents discussed above and its detailed consideration
in this paper is inappropriate.

V. APPROBATION OF MODELS AND TOOLS OF
KNOWLEDGE PROCESSING MACHINES DESIGN

Initial testing of the developed models and tools was carried
out on the basis of the IMS Metasystem itself [7] [28]. In the
process, the initial filling of the library of reusable sc-agents
and knowledge processing programs was carried out.

In addition, the proposed solutions are used in the work
of the students of the department of Intelligent Information
Technologies of Belarusian State University of Informatics and

Radioelectronics to develop knowledge processing machines of
intelligent reference systems (IRS) in various subject domains.

Of particular interest are the prototypes of knowledge
processing machines of the Euclidean geometry IRS and graph
theory IRS. This is due, firstly, regarding the development level
and the complexity of these prototypes, and secondly, the fact
that these systems use fundamentally different approaches to
problems solving.

As part of the Euclidean geometry IRS were implemented
depth-first problem solution search strategy and logical infer-
ence engine, allowing to solve the problem in a few steps using
logical statements (theorems, axioms), stored in the knowledge
base.

In turn, within the graph theory ISS was implemented
concept of programs package, which is based on a mechanism
of reducing the problem to sub-problems, each of which is
finally solved by executing a program stored in system memory
for some input. This mechanism also allows to solve problems
in several steps, i.e. solve such problems, for which there is
no ready-made program, with which it would be possible to
solve this problem.

In addition, the knowledge processing machine of each of
the prototypes under consideration consists a set of search
agents, many of which were taken from the Library of reusable
sc-agents, and some specially implemented for the relevant
system, as they are subject-dependent.

A. Knowledge Processing Machine of IMS

Currently, knowledge processing machine of IMS itself,
excluding subsystem, includes a set of information search
agents, implementing mechanisms of basic navigation within
the knowledge base. All these sc-agents included in the corre-
spondent libraries.

The structure of the knowledge processing machine in
SCn-code:

Knowledge processing machine of IMS
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of search of all outgoing constant

positive permanent arcs of membership
• Abstract sc-agent of search of all outgoing constant

positive permanent arcs of membership with role
relations

• Abstract sc-agent of search of all ingoing constant
positive permanent arcs of membership

• Abstract sc-agent of search of all ingoing constant
positive permanent arcs of membership with role
relations

• Abstract sc-agent of search of all identifiers of given
element

• Abstract sc-agent of search of full semantic
neighborhood for given object

• Abstract sc-agent of search of decomposition links for
given sc-element

• Abstract sc-agent of search of all entities which are
general for given entity

• Abstract sc-agent of search of all entities which are
particular for given entity



• Abstract sc-agent of search of definition or
explanation for given object
}

B. Knowledge Processing Machine of Euclidian Geometry
IRS

In addition to the mentioned standard set of basic agents
of information search, for Euclidian geometry IRS additional
search agents have been implemented and subsequently in-
cluded in the Library of information search sc-agents of IMS,
and one of the problem-solving models has been implemented
too.

The list of information search agents, implemented within
the Euclidean geometry IRS:

• Abstract sc-agent of search of annotation for given
section

• Abstract sc-agent of search of axioms for given
ontology

• Abstract sc-agent of search of theorems for given
ontology

• Abstract sc-agent of search of direct connections
between two objects

• Abstract sc-agent of search of concepts, on the base
of which given concept is defined

• Abstract sc-agent of search of definitional domain
for given relation

• Abstract sc-agent of search of definition or explana-
tion for given object

• Abstract sc-agent of search of examples for given
concept

• Abstract sc-agent of search of formal notation for
given statement sign

• Abstract sc-agent of search of illustrations for given
object

• Abstract sc-agent of search of key sc-elements for
given subject domain

• Abstract sc-agent of search of concepts, defined on
the base of given

• Abstract sc-agent of search of construction by given
pattern

• Abstract sc-agent of search of proof sc-text for given
statement

• Abstract sc-agent of search of relations, defined on
the given object

• Abstract sc-agent of search of problem condition and
solution sc-text

• Abstract sc-agent of search of statements about given
object

As part of Euclidian geometry IRS also implemented a
prototype of intelligent problem solver which, as well as some
of its components, can be used in other systems. The structure
of the solver:

Non-atomic abstract sc-agent of problem solution
<= abstract sc-agent decomposition*:

{
• Abstract sc-agent of search of given quantity value
• Abstract sc-agent of statement validity check

• Abstract sc-agent of problem solving strategy
application

• Abstract sc-agent of logical inference
• Non-atomic abstract sc-agent of mathematical

expressions interpreting
<= abstract sc-agent decomposition*:
{
• Abstract sc-agent of mathematical expressions

calculating coordination
• Abstract sc-agent of exponention, rooting and

finding the logarithm
• Abstract sc-agent of numbers and quantitites

addition and substitution
• Abstract sc-agent of numbers and quantitites

multiplication and division
• Abstract sc-agent of numbers and quantitites

comparison
• Abstract sc-agent of trigonometrical

expressions evaluating
}

}

C. Knowledge Processing Machine of Graph Theory IRS

At the moment, for the graph theory IRS the following
agents have been implemented (excluding agents, taken from
the library):

Agents which answer general questions about the graph:

• Abstract sc-agent of graph specification
• Abstract sc-agent of search of the graph character-

istics
• Abstract sc-agent of search of the graph numeric

characteristics
• Abstract sc-agent of search of sets, characterizing

the graph

Agents, forming sets characterizing the graph:

• Abstract sc-agent of search of minimal spanning tree
of the graph

• Abstract sc-agent of search of articulation points set
of the graph

• Abstract sc-agent of search of bridges set of the
graph

• Abstract sc-agent of search of deadends set of the
graph

• Abstract sc-agent of search of anti-deadends set of
the graph

Agents to identify the type of the graph:

• Abstract sc-agent of graph directivity check
• Abstract sc-agent of graph planarity check
• Abstract sc-agent of graph reflexivity check
• Abstract sc-agent of graph connectivity check
• Abstract sc-agent of graph symmetry check
• Abstract sc-agent of graph transitivity check
• Abstract sc-agent of graph cyclicity check

Agents of graph numeric characteristics evaluation:

• Abstract sc-agent of search of connected components
of the graph



Most of the agents above, corresponds to scp-program,
which implements the basic algorithm of the agent, and
has a specification that allows to resolve the possibility and
feasibility of that program use in the process of solving a
problem.

To enable the use of multiple programs or logic statements
in the process of solving a problem, within the graph theory
IRS, discussed above Non-atomic abstract sc-agent of problem
solving was included in and modified. After the modifying,
the agent became to be able to analyze not only the logical
statements but the program specifications too, and, if necessary,
initiate the implementation of these programs with the required
input data. Unlike the original, the modified agent implements
a strategy of problem solution search from the target (inverse
inference), and tries to construct a sequence of programs and
logical statements, use of which on existing input will lead to
the desired result.

Actions, executed by modified agent has two arguments.
The first argument is a sign of the entity, the characteristic
of which it is necessary to find or calculate (for example,
the sign of a concrete graph), the second - a sign of the
class, corresponding to the characteristic described, and the
second argument can be an absolute concept or relative. For
example, if it is necessary need to check whether a given
graph is acyclic, the second argument is a sign of the concept
acyclic graph; if it is necessary to determine the diameter of
a given graph, then the second argument will be the sign of
the diameter* relation.

VI. CONCLUSION.

In conclusion, we list the main advantages of the obtained
results. The development of a universal model of knowledge
processing machine, based on the system of subject domains
and ontologies presented above, allows to unify different
approaches to the knowledge processing, which in turn makes
it possible to:

• on a basis of the proposed model, provide the im-
plementation of any knowledge processing models
and problems solution methods, including parallel
and asynchronous;

• integrate, if necessary, different approaches to prob-
lems solution in a single system, and to ensure their
simultaneous execution;

• consider any knowledge processing machine as a
hierarchical system, which significantly increases the
efficiency of the processes of its design, implemen-
tation and debugging;

• ensure platform independence of implemented
knowledge processing machines and their compo-
nents;

• through the use of multi-agent approach and unifi-
cation of principles of agents distinguishing provide
the flexibility of implemented knowledge processing
machines;

• due to the universal and unified representation of the
processed knowledge generalize existing approaches
to solution of certain classes of problems, letting to
turn the problems formulating way from procedural
into declarative, thus providing greater flexibility of
implemented solutions;

Development of standardized methods of knowledge pro-
cessing machines design as ontology of design can signif-
icantly reduce the number of situations in which a similar
solution being implemented by different developers are in-
compatible, which leads to the need for duplication of similar
solutions in different systems. Furthermore, this approach
makes it possible to use the already implemented components
in the design of new machines, thus significantly reducing the
overheads of their implementation.

Develop and implemented model of system of knowledge
processing machines design support will provide automation
of the activity of these machines developers and reduce the
overhead of their verification and debugging. Moreover, this
model is designed with all of the above mentioned approaches,
which allows to provide the flexibility of that system itself.

This work was supported by BRFFR-RFFR (Ф15PM-
074, Ф16P-102).

Список литературы
[1] (2016, Apr.) FIPA ACL Message

Structure Specification [Online]. – Available:
http://www.fipa.org/specs/fipa00061/SC00061G.html.

[2] (2016, Apr.) Cypher Query Language [Online]. – Available:
http://neo4j.com/docs/stable/cypher-query-lang.html.

[3] C. B. Excelente-Toledo, N. R. Jennings. The Dynamic Selection
of Coordination Mechanisms. Autonomous Agents and Multi-
Agent Systems Vol. 9, Issue 1, February 2004, p. 55-85

[4] T. Finin, R. Fritzson, D. McKay, R. McEntire. KQML as
an agent communication language // Proceedings of the
third international conference on Information and knowledge
management - CIKM ’94. — 1994. — P. 456.

[5] Gruber T.R. A Translational Approach to Portable Ontologies
// Knowledge Acquisition. – 1993. – V. 5. – No. 2. – P. 199 –
220.

[6] Hartung R.L., A. Hakansson A. Using Meta-agents to Reason
with Multiple Ontologies KES-AMSTA 2008. Pp. 261-270.

[7] (2016, Apr.) The IMS.OSTIS website [Online]. – Available:
http://www.ims.ostis.net.

[8] Jackson, P. Introduction to Expert Systems / P. Jackson //
Boston: Addison-Wesley, 1998.

[9] Jagannathan V., Dodhiawala K., Baum L. Blackboard
Architectures and Applications. — N.Y.: Academic Press, 1989.

[10] (2016, Apr.) Autonomous Agents and
Multi-Agent Systems[Online]. – Available:
http://www.springer.com/computer/ai/journal/10458.

[11] Macal C.M., North M.J. Tutorial on Agent-based Modeling
and Simulation // Proceedings of the 2005 Winter Simulation
Conference. WSC’05. 2005.

[12] Marietto M., David N., Sichman J.S., Coelho H. Requirements
Analysis of Agent-Based Simulaton Platforms: State of the Art
and New Prospects // Multi-Agent-Based Simulation II, Vol.
2581 of LNAI series, Springer-Verlag. 2002.

[13] (2016, Apr.) OWL Implementations[Online]. – Available:
https://www.w3.org/2001/sw/wiki/OWL/Implementations/

[14] (2016, Apr.) OWL 2 Web Ontology Language [Online]. –
Available: http://www.w3.org/TR/owl2-overview.

[15] (2016, Apr.) RDF 1.1 Concepts and Abstract Syntax [Online].
– Available: http:// http://www.w3.org/TR/rdf11-concepts/.

[16] M. Sims, D. Corkill, V. Lesser. Automated organization design
for multi-agent systems. Autonomous Agents and Multi-Agent
Systems Vol. 16, Issue 2, June 2008, p. 151-185

[17] (2016, Apr.) SPARQL 1.1 Overview [Online]. – Available:
https://www.w3.org/TR/sparql11-overview/.

[18] (2016, Apr.) World Wide Web Consortium [Online]. –
Available: http:// http://www.w3.org.



[19] Waterman D. A. Guide to expert systems / D. A. Waterman
// Boston: Addison-Wesley, 1985.

[20] D. Weyns, A. Omicini, J. Odell. Environment as a first class
abstraction in multiagent systems. Autonomous Agents and
Multi-Agent Systems (Special Issue on Environments for Multi-
agent Systems) Vol. 14, Issue 1, February 2007, p. 5-30

[21] Батыршин И.З. Основные операции нечеткой логики и их
обобщения / И.З. Батыршин; – Казань: Отечество, 2001.

[22] Беркинблит М. Б. Нейронные сети. — М.: МИРОС и ВЗМШ
РАО, 1993. — 96 с.

[23] Борисов, А.Н., Построение интеллектуальных систем, осно-
ванных на знаниях, с повторным использованием компонен-
тов / А.Н. Борисов // Открытые семантические технологии
проектирования интеллектуальных систем (OSTIS-2014): ма-
териалы IV Междунар.научн.-техн.конф. – Мн.: БГУИР,
2014

[24] Борщев В.Б. Вегетативная машина // Программирование.
- 1989. - N 5. - с. 16-28.

[25] Вагин В.Н. Достоверный и правдоподобный вывод в интел-
лектуальных системах / Вагин В.Н.[и др.]; – М. : ФИЗМАТ-
ЛИТ, 2008.

[26] Гладков Л. А., Курейчик В. В., Курейчик В. М. Гене-
тические алгоритмы: Учебное пособие. — 2-е изд. — М:
Физматлит, 2006. — С. 320.

[27] Голенков В.В., Гулякина Н.А., Елисеева О.Е. Описание
языка SCP (Материалы по математическому обеспечению
ЭВМ). - Минск: Ин-т техн. кибернетики АН Беларуси, 1995.
- 152 с.

[28] Голенков В.В., Гулякина Н.А. Проект открытой семантиче-
ской технологии компонентного проектирования интеллек-
туальных систем. Часть 1: Принципы создания. / В. В.
Голенков, Н.А. Гулякина // Онтология проектирования. –
2014. – №1. c.42-64

[29] Голенков В.В., Гулякина Н.А. Проект открытой семантиче-
ской технологии компонентного проектирования интеллек-
туальных систем. Часть 2: Унифицированные модели проек-
тирования. / В. В. Голенков, Н.А. Гулякина // Онтология
проектирования. – 2014. – №4. c.34-53

[30] Горбань А.Н., Россиев Д.А. Нейронные сети на персональ-
ном компьютере. — Новосибирск: Наука, 1996. — 276 с.

[31] Городецкий, В.И. Многоагентные системы (обзор)/В.И. Го-
родецкий, М.С. Грушинский, А.В. Хабалов// Новости искус-
ственного интеллекта. - 1998. - № 2. - С.64-116

[32] Грибова, В.В. Базовая технология разработки интеллекту-
альных сервисов на облачной платформе IACPaaS. Часть 1.
Разработка базы знаний и решателя задач / Грибова В.В.[и
др.] // Программная инженерия. – №12, 2015, с. 3 - 11.

[33] Давыденко, И.Т. Семантическая модель коллективного
проектирования баз знаний / И.Т. Давыденко // Открытые
семантические технологии проектирования интеллектуаль-
ных систем (OSTIS-2016): материалы VI Междунар.научн.-
техн.конф. – Мн.: БГУИР, 2016.

[34] Давыденко, И.Т. Средства структуризации семантических
моделей баз знаний / И.Т. Давыденко, Н.В. Гракова, Е.С.
Сергиенко, А.В. Федотова // Открытые семантические тех-
нологии проектирования интеллектуальных систем (OSTIS-
2016): материалы VI Междунар.научн.-техн.конф. – Мн.:
БГУИР, 2016.

[35] Деменков Н.П. Нечеткое управление в технических систе-
мах / Н.П. Деменков; – М : Изд. им. Баумана, 2005.

[36] Дийкстра Э. Взаимодействие последовательных процессов
/ Э. Дийкстра // Языки программирования. - М.: Мир, 1972.
- с. 9-86.

[37] Емельянов В. В., Курейчик В. В., Курейчик В. М. Теория и
практика эволюционного моделирования. — М: Физматлит,
2003. — С. 432.

[38] Еремеев А.П. Построение решающих функций на базе тер-
нарной логики в системах принятия решений в условиях
неопределенности // А.П. Еремеев Известия академии наук.
Теория и системы управления, 1997. №5.

[39] Загорулько Г.Б., Загорулько Ю.А. Подход к интеграции
разнородных методов поддержки принятия решений для
сложных задач / Г.Б. Загорулько, Ю.А. Загорулько // От-
крытые семантические технологии проектирования интел-
лектуальных систем (OSTIS-2013): материалы Междунар.
научн-техн. конф. (Минск, 16–18 февраля 2013 г.); – Минск:
БГУИР, 2013.

[40] Корончик, Д.Н. Реализация хранилища унифицирован-
ных семантических сетей / Д.Н. Корончик // Открытые
семантические технологии проектирования интеллектуаль-
ных систем (OSTIS-2013): материалы III Междунар.научн.-
техн.конф. Мн.: БГУИР, 2013 – С.125-129

[41] Котов В.Е., Нариньяни А.С. Асинхронные вычислительные
процессы над общей памятью // Кибернетика. - 1966. - N 3.
- с. 64-71.

[42] Кулик, Б. А. Логика естественных рассуждений / Б. А.
Кулик; - СПб.: Изд-во «Невский диалект», 2001.

[43] Пойа Д. Математика и правдоподобные рассуждения /
Пойа Д.; – М.: Изд-во «НАУКА», 1975.

[44] Поспелов Д.А. Моделирование рассуждений. Опыт анализа
мыслительных актов / Д.А.Поспелов; – М. :Изд-во «Радио и
связь», 1989.

[45] Рыбина Г.В. Основы построения интеллектуальных систем.
— М.: Финансы и статистика; ИНФРА-М, 2010. — 432 с.

[46] Справочник. Искусственный интеллект. Книга 1: системы
общения и экспертные системы // Под ред. Э. В. Попова. —
М.: «Радио и связь», 1990

[47] Тарасов В.Б. От многоагентных систем к интеллектуаль-
ным организациям / В.Б. Тарасов // Эдиториал УРСС, 2002.
352 с.

[48] Филиппов А.А. Единая онтологическая платформа интел-
лектуального анализа данных / А.А. Филиппов, В.С. Мош-
кин, Д.О. Шалаев, Н.Г. Ярушкина // Открытые семантиче-
ские технологии проектирования интеллектуальных систем
(OSTIS-2016): материалы VI Междунар.научн.-техн.конф. –
Мн.: БГУИР, 2016.

[49] Шункевич Д.В. Принципы построения машин обработки
знаний интеллектуальных систем на основе семантических
сетей. / Д.В. Шункевич // Электроника-инфо. — 2014. - №
3.

[50] Шункевич, Д.В. Формальное семантическое описание це-
ленаправленной деятельности различного вида субъектов
/ Д.В. Шункевич, А.В. Губаревич, М.Н. Святкина, О.Л.
Моросин // Открытые семантические технологии проекти-
рования интеллектуальных систем (OSTIS-2016): материалы
VI Междунар.научн.-техн.конф. – Мн.: БГУИР, 2016.

[51] Шункевич, Д.В. Унифицированная семантическая модель
процесса проектирования машин обработки знаний/ Д.В.
Шункевич // Информационные технологии и системы (ITS-
2016): материалы Междунар.научн.конф. – Мн.: БГУИР,
2016.

[52] Шункевич, Д.В. Средства поддержки компонентного про-
ектирования систем, управляемых знаниями / Д.В. Шун-
кевич, И.Т. Давыденко, Д.Н. Корончик, И.И. Жуков, А.В.
Паркалов // Открытые семантические технологии проекти-
рования интеллектуальных систем (OSTIS-2015): материалы
VI Междунар.научн.-техн.конф. – Мн.: БГУИР, 2015.

ОНТОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ
МАШИН ОБРАБОТКИ ЗНАНИЙ

Шункевич Д.В.

Работа посвящена разработке технологии проекти-
рования машин обработки знаний интеллектуальных
систем, в основе которой лежат онтологическая модель
самой машины и онтологическая модель процесса про-
ектирования.



В настоящее время все более актуальным становится
использование интеллектуальных систем в самых раз-
личных областях человеческой деятельности, в особен-
ности в тех ситуациях, где нахождение человека может
быть опасным или приводить к возникновению ошибок,
обусловленных так называемым человеческим факто-
ром. В частности, одним из наиболее перспективных
направлений в данной области является разработка
систем, основанных на знаниях. В свою очередь в каче-
стве основы для формального представления знаний в
такого рода системах широко используются онтологии.

Одним из ключевых компонентов каждой такой си-
стемы является машина обработки знаний, обеспечи-
вающая возможность решать различные задачи, свя-
занные как с непосредственно основным функционалом
системы (машина информационного поиска и интел-
лектуальный решатель задач), так и с обеспечением
корректности работы самой такой системы (машина
сборки информационного мусора, повышения качества
базы знаний), а также с обеспечением автоматизации
развития самой этой системы. Следует отметить, что
задачи, решаемые некоторыми компонентами машины
обработки знаний, не всегда явно сформулированы. К
таким задачам можно отнести, например, выявление
и сборку информационного мусора, оптимизацию базы
знаний и т.д.

Важнейшим компонентом машины обработки зна-
ний является интеллектуальный решатель задач.

Можно разделить существующие подходы к постро-
ению решателей задач на два класса:

• решение задач с использованием хранимых
программ. В данном случае предполагается,
что в системе заранее присутствует программа
решения задачи заданного класса и решение
сводится к поиску такой программы и интер-
претации ее на заданных входных данных. К
данному классу относятся, в том числе, систе-
мы, использующие генетические алгоритмы и
нейросетевые модели обработки знаний.

• решение задач в условиях, когда программа
решения не известна. В этом случае предпо-
лагается, что в системе необязательно присут-
ствует готовая программа решения для клас-
са задач, которому принадлежит некоторая
сформулированная задача, подлежащая реше-
нию. В связи с этим необходимо применять до-
полнительные методы поиска путей решения
задачи, не рассчитанные на какой-либо узкий
класс задач (например, разбиение задачи на
подзадачи, методы поиска решений в глубину
и ширину, метод случайного поиска решения и
метод проб и ошибок, метод деления пополам
и др.), а так же различные модели логическо-
го вывода (классические дедуктивные, индук-
тивные, абдуктивные; модели, основанные на
нечетких логиках, темпоральной логике и т.д.).

Таким образом, существует большое число подходов
к построению различных компонентов машин обра-
ботки знаний компьютерных систем, в том числе -

интеллектуальных решателей задач, многие из которых
успешно реализованы и активно используются.

Рассмотрим два основных исторически сложивших-
ся подхода к построению машин обработки знаний.

Первый подход предполагает наличие в системе
фиксированной машины обработки знаний (например,
машины логического вывода), к которой впоследствии
добавляется база знаний, наполнение которой опреде-
ляется предметной областью, в которой должна ра-
ботать система. Такие системы получили название
«пустых» экспертных систем или «оболочек» (expert
system shells). Данный подход, как правило, использо-
вался для разработки относительно несложных систем
и в настоящее время не имеет широкого применения.

Второй подход, широко используемых в настоящее
время, предполагает наличие программных средств
доступа к информации, хранящейся в некоторой ба-
зе, совместимых с различными популярными языками
программирования. Данный подход широко использу-
ется, например, в системах, построенных на основе
стандартов W3C. Структура всей машины обработ-
ки, построенной на базе таких средств, определяет-
ся разработчиком в каждом конкретном случае и не
фиксируется какими-либо стандартами. Такой подход
обладает большей гибкостью, но отсутствие унифика-
ции в структуре и процессе проектирования машины
приводит к отсутствию совместимости компонентов ма-
шин, созданных разными разработчиками, большому
количеству дублирований одних и тех же решений,
повышению накладных расходов в процессе разработки
и поддержки машины.

Очевидным становится тот факт, что каждой раз-
рабатываемой системе необходима своя уникальная
машина обработки знаний, учитывающая особенности
конкретной системы и предполагающая возможность
ее быстрой корректировки в случае необходимости, в
то время как большинство современных систем имеют
фиксированную машину обработки знаний, способную
решать задачи из небольшого ограниченного класса
(например, осуществлять дедуктивный логический вы-
вод на основе нескольких правил).

В то же время, актуальным становится вопрос о
возможности одновременного использования в рамках
одной системы нескольких механизмов решения задач,
что обусловлено высокой востребованностью систем,
способных автономно работать в условиях, имеющих
высокий уровень непредсказуемости (например, в кос-
мосе или других условиях, не пригодных для работы
в них человека). Системы, реализующие жестко фик-
сированный набор алгоритмов, не могут удовлетворить
данному требованию, в связи с чем актуальным ста-
новится вопрос о возможности быстрого наращивания
функционала системы прямо в процессе ее работы.

Несмотря на то, что в настоящее время существует
большое число моделей, методов и средств обработки
знаний, многие из которых успешно используются в
различных системах, до сих пор остаются актуальными
следующие проблемы:



• отсутствие единых универсальных принципов,
лежащих в основе реализации различных мо-
делей обработки знаний приводит к большому
количеству дублирований аналогичных реше-
ний в разных системах и невозможности ис-
пользовать решения, реализованные в одной
системе, в других системах. Как следствие, вы-
сока трудоемкость разработки каждой такой
машины, велики сроки их разработки, затруд-
нена возможность одновременного использо-
вания различных моделей решения задач в
рамках одной системы;

• разрабатываемые машины обработки знаний
не обладают гибкостью, т.е. отсутствует или
сильно затруднена возможность дополнения
уже созданной машины новыми компонентами
и внесения изменений в уже существующие
компоненты. Таким образом, высока трудоем-
кость поддержки разработанных машин, что
приводит к их быстрому моральному старе-
нию;

• высок уровень профессиональных требований
к разработчикам машин обработки знаний;

• попытки объединения большого числа разра-
ботчиков в коллективы недостаточно эффек-
тивны по причине отсутствия иерархичности
в разрабатываемых машинах и, как следствие,
в коллективах разработчиков. Трудности в со-
гласовании действий приводят к дополнитель-
ным накладным расходам.

Следствием указанных проблем является сравни-
тельно высокая трудоемкость разработки и сопровож-
дения систем, основанных на знаниях, а как следствие
— их высокая стоимость.

В рамках данной работы решение указанных про-
блем предлагается осуществлять с использованием он-
тологического подхода, в данном случае – онтологи-
ческого подхода к проектированию машин обработки
знаний.

Таким образом, для решения описанных выше про-
блем в области построения машин обработки знаний
предлагается разработать:

• унифицированную онтологическую модель ма-
шины обработки знаний, обладающей свой-
ствами гибкости, модульности, платформен-
ной независимости и позволяющую реализо-
вать на ее основе любые существующие моде-
ли и методы обработки знаний, в том числе
параллельной и асинхронной;

• онтологию проектирования машин обработки
знаний, построенных на основе указанной вы-
ше модели, включающую описание методи-
ки проектирования и формальную типологию
действий разработчика таких машин;

• онтологическую модель системы поддержки
проектирования машин обработки знаний, по-
строенных на основе указанной модели и про-
ектируемых по описанной методике.

Первоначальная апробация разработанных моделей
и средств осуществлялась на базе самой метасистемы
поддержки проектирования интеллектуальных систем
IMS. В процессе работы осуществлено первоначальное
наполнение библиотеки многократно используемых sc-
агентов и программ обработки знаний.

Разработка универсальной модели машины обработ-
ки знаний на основе представленной выше системы
предметных областей и онтологий позволяет унифици-
ровать различные подходы к обработке знаний, что в
свою очередь дает возможность:

• обеспечить на основе предлагаемой модели ре-
ализацию любых моделей обработки знаний и
решения задач, в том числе параллельных и
асинхронных;

• при необходимости интегрировать различные
подходы к решению задач в рамках одной си-
стемы и обеспечить их одновременную работу;

• рассматривать любую машину обработки зна-
ний как иерархическую систему, что суще-
ственно повышает эффективность процессов
ее проектирования, реализации и отладки;

• обеспечить платформенную независимость ре-
ализованных машин обработки знаний и их
компонентов;

• за счет использования многоагентного подхода
и унификации принципов выделения агентов
обеспечить гибкость реализованных машин об-
работки знаний;

• за счет универсального и унифицированного
представления обрабатываемых знаний обоб-
щать существующие подходы к решению неко-
торых классов задач, позволяя перейти от
процедурной формулировки задач к деклара-
тивной, обеспечивая таким образом большую
гибкость реализованных решений;

Разработка унифицированной методики проектиро-
вания машин обработки знаний в виде онтологии про-
ектирования позволяет существенно снизить количе-
ство ситуаций, в которых аналогичные решения при
их реализации различными разработчиками оказыва-
ются несовместимыми, что влечет за собой необходи-
мость дублирования аналогичных решений в разных
системах. Кроме того, такой подход дает возможность
широко использовать уже реализованные компоненты
при проектировании новых машин, существенно сни-
жая при этом накладные расходы на их реализацию.

Кроме того, разработана модель системы поддерж-
ки проектирования машин обработки знаний. Разра-
ботанная и реализованная модель системы поддержки
проектирования машин обработки знаний позволит ав-
томатизировать деятельность разработчиков таких ма-
шин и снизить накладные расходы на их верификацию
и отладку. Кроме того, указанная модель разработана
с использованием всех перечисленных выше подходов,
что позволяет обеспечить гибкость самой такой систе-
мы.


